

INL/EXT-15-36656

Light Water Reactor Sustainability Program

RAVEN Quality Assurance Activities

September 2015

DOE Office of Nuclear Energy

DISCLAIMER
This information was prepared as an account of work sponsored by an agency of
the U.S. Government. Neither the U.S. Government nor any agency thereof, nor
any of their employees, makes any warranty, expressed or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness,
of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. References herein to any specific
commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, do not necessarily constitute or imply its
endorsement, recommendation, or favoring by the U.S. Government or any
agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the U.S. Government or any agency thereof.

INL/EXT-15-36656

Light Water Reactor Sustainability Program

RAVEN Quality Assurance Activities

Joshua J. Cogliati

September 2015

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov/lwrs

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

 ii

EXECUTIVE SUMMARY

This report discusses the quality assurance activities needed to raise the Quality
Level of Risk Analysis in a Virtual Environment (RAVEN) from Quality Level 3 to
Quality Level 2. This report also describes the general RAVEN quality assurance
activities. For improving the quality, reviews of code changes have been instituted, more
parts of testing have been automated, and improved packaging has been created. For
upgrading the quality level, requirements have been created and the workflow has been
improved.

 iii

CONTENTS
EXECUTIVE SUMMARY .. ii

FIGURES ... iv

TABLES .. iv

ACRONYMS .. v

1. Introduction .. 7

2. Quality Level .. 7

3. Automated Quality Assurance .. 8

3.1 Cluster Testing .. 8

3.2 RAVEN Packages ... 8

3.3 Miniconda .. 9

3.4 RAVEN Whole .. 9

3.5 Virtual Machine Testing .. 10

4. RAVEN Development Processes ... 11

4.1 Merge Requests ... 11

4.2 Checklist .. 12

4.3 Regression Tests .. 12

4.4 Workflow for Change Requests .. 13

4.5 Development Issues ... 13

5. References .. 18

Appendix A: Initial Requirements .. 19

 iv

FIGURES

Figure 1 GitLab GUI for managing merge requests ... 11

Figure 2 Regression tests on moosebuild .. 14

Figure 3 C++ code coverage ... 14

Figure 4 Python Code coverage .. 15

Figure 5 Code Change Process ... 16

Figure 6 Example of an Issue .. 17

TABLES

Table 1 Types of RAVEN Packages ... 9

 v

ACRONYMS

CSV Comma Separated Variable file.

MOOSE Multiphysics Object-Oriented Simulation Environment

QA quality assurance

RAVEN Risk Analysis Virtual Environment

7

RAVEN Quality Assurance Activities
1. Introduction

This report discusses the quality assurance (QA) activities needed to raise the Quality Level of Risk
Analysis in a Virtual Environment (RAVEN) from Quality Level 3 to Quality Level 2. This report
also describes the general RAVEN quality assurance activities. For improving the quality, reviews of
code changes have been instituted, more parts of testing have been automated and improved packaging
has been created. For upgrading the quality level, requirements have been created (see Appendix A)
and the workflow has been improved.

The future and final RAVEN quality level determination has not yet being done and therefore it has
not yet been determined if RAVEN [1, 2, 3, 4] will require a quality level 2 or 1. As already
highlighted, the work described here would allow complying with quality level 2.

Most of the improvements implemented under the activities in support of this milestone are in
accordance with the documents:

• Maintenance and Operations Plan for the MOOSE Project PLN-4003
• Configuration Management Plan for Modeling and Simulation Software PLN-4004
• Software Quality Assurance Plan for Modeling and Simulation Software PLN-4005
• Project Management Plan for Modeling and Simulation Software PLN-4213

Those documents were agreed to by the MOOSE and MOOSE-based software teams, to provide a
common approach to fulfilling of QA requirements.

2. Quality Level

RAVEN is transitioning from being a purely developmental code to becoming an externally-used
code. As part of that process, the Quality Level is being increased from Level 3 to Level 2. This level
reflects that RAVEN will be beginning the maintenance and operations portion of its lifecycle. RAVEN
development will continue with new features and other improvements, but the greater use requires more
care to maintain RAVEN’s stability and reliability. As part of a larger effort for MOOSE modeling and
simulation, software management plans have been created and are being reviewed. These include the five
documents: Maintenance and Operations Plan for the MOOSE Project PLN-4003, Configuration
Management Plan for Modeling and Simulation Software PLN-4004, Software Quality Assurance Plan
for Modeling and Simulation Software PLN-4005, Verification & Validation Plan for Modeling and
Simulation Software PLN-4006 and Project Management Plan for Modeling and Simulation Software
PLN-4213.

The documents commonly edited by the RAVEN team and by the other team developing software
based on the MOOSE [5] platform, were reviewed and the necessary modification and documentation
were implemented. One of the needs is the creation of requirements for RAVEN and these have been
written. Another need is that when changes in the code occur, the code needs to be reviewed. This
practice has been formalized and documented with the creation of a checklist that a second developer uses
before any code is added to the main version. The checklist includes both a code review and running the
regression tests.

8

3. Automated Quality Assurance

3.1 Cluster Testing

As part of improving the quality of RAVEN, automatic cluster testing was added. The regular
MOOSEBUILD system that provides regression testing for RAVEN is not integrated with INL’s HPC
clusters. This was an issue because RAVEN has code that is only used when running on clusters. If
changes occurred in other parts of RAVEN, then sometimes the cluster code would break, and RAVEN
would no-longer be able to run on the cluster. The related problems might not get noticed until a user
submits a job and RAVEN fails. The eventuality of not detecting problems with running on a cluster has
been fixed by creating a set of tests that are automatically run every night on the INL HPC cluster. The
scripts test three different methods of executing the code:

1. Running from interactive mode, where the user runs qsub themselves. In such a situation
the user creates the proper parallel environment and executes RAVEN inside this
environment.

2. Having RAVEN create the qsub command and run it. In this case the user asks RAVEN
to create the parallel environment where the code is then executed.

3. Using custom mode where the user specifies the scripts and RAVEN follows those
instructions. This also tests using pbsdsh which is an alternate way of running remotely
compared to using MPI that is the more common approach to generating a parallel
environment.

The script then emails the test results to the RAVEN development team so they can be checked and
failures noticed.

3.2 RAVEN Packages

The several different types of RAVEN packages generated are listed in Table 1. The packages are groups
of files that either provide RAVEN or provide things that RAVEN needs to be installed and run. These
packages are generated using scripts as part of creating a release. The RAVEN team periodically
produces releases for use by people who do not have access to the RAVEN git repository, and to help
with installing RAVEN. There are several different types of RAVEN packages because different users
have different needs. None of the current packages contain RAVEN C++ because that requires RELAP-7
as a dependency. The RAVEN source package contains the needed RAVEN, Crow and MOOSE source
code and this package is mainly used for people who do not have access to INL’s HPC systems or even if
they want to perform the installation on a different machine. The libraries package contains the libraries
needed to run RAVEN on OSX and is for people who do not install the MOOSE environment package.
This package needs either the source package or use with git to get the RAVEN source code. The
complete package contains both the libraries and the RAVEN code for a simple install on OSX.

9

Table 1 Types of RAVEN Packages

 Description Operating System

Source Package Contains the Source Code Any

Libraries Package Contains the Libraries used by RAVEN OSX

Complete Package Contains Libraries and RAVEN OSX

3.3 Miniconda

The RAVEN project provides packages that can be used to simplify installing RAVEN. The
original RAVEN packages for OSX generate only the Python modules and libraries that are not
distributed with OSX. This works well when installing on a clean OSX install. Unfortunately, if the user
installed or upgraded Python or the Python modules that RAVEN uses, that version might get used by
RAVEN and sometimes this caused the installation of RAVEN to fail. Alternative OSX packages have
been created that use Miniconda, a tool to install versions of Python. Miniconda is used to installs a
separate installation of Python and all the Python modules and libraries that RAVEN needs. This isolates
RAVEN from Python modules that a user might have installed for other Python software, which makes
installation more reliable. In addition, Miniconda works with both Yosemite and Mavericks, which
allows a unified libraries package to be created instead of providing two OSX packages. The use of
Miniconda does have the disadvantage of increased package size, since Miniconda includes its own
Python. This increases sizes from about 75 MB to 300 MB.

3.4 RAVEN Whole

RAVEN uses MOOSE, but the RAVEN framework only uses a portion of MOOSE. The portions
of MOOSE used include the regression testing system and some of the Python modules. Since RAVEN
only uses part of Moose, users only need to get that part to run the code. For releases, this is already done
since the release scripts extract the necessary parts of MOOSE and put them in the packages. Releases
however are only done periodically. In order to provide frequent updates, this needs to be done
automatically. In order to make this easy for users to use, it makes sense to create a repository for this
task.

For these reasons a whole RAVEN git repository has been created. This repository combines the
needed parts of MOOSE and Crow with RAVEN in a single repository. A script automatically checks out
RAVEN and the needed parts of Crow and MOOSE into a directory tree. Then these are tested, and if the
RAVEN tests pass, they are pushed into the whole RAVEN git repository. Users of RAVEN can then
just get the whole RAVEN, instead of using three different repositories. This simplifies installation and
running. It makes it easy to keep updated with RAVEN and Crow and MOOSE. It does have the
disadvantage of creating an effectively read-only repository, so developers will still need to use the
existing separate repositories for their work but it could be used by beta testers that need to receive a
prompt feedback from the developers.

10

3.5 Virtual Machine Testing

It is useful for RAVEN to run on a variety of different operating systems. However, testing on
multiple operating systems is time consuming. In order to speed up this testing, a method for testing on
multiple Linux distribution with virtual machines has been created. The virtual machines are an entire
simulated computer and operating system that resides on the host machine. The virtual machines are
created manually, but after that they can be automatically started. The main computer will simulate
virtual machines that then test RAVEN. Currently this system is used to test the RAVEN whole
repository and the RAVEN source code package. For both type of sources a script compiles RAVEN’s
modules, and then tests RAVEN. This works by putting a rc.local script in each computer. That
script then calls a script in a user directory that does the compiling and testing. This has been tested with
the Linux distributions Fedora 21, Ubuntu 14.4 and Ubuntu 15.4.

11

4. RAVEN Development Processes

The RAVEN development processes are used to ensure that RAVEN maintains its quality,
manages to simplify software code development, and constructs the proper records for QA purposes. For
each step of the development process, a set of guidelines and needed actions are defined that guide the
developers from submitting the request for a new feature or bug fix to the merge of the new code into the
production version of the code.

4.1 Merge Requests

One of the key parts of managing the RAVEN code configuration is merge requests. The git
source code repository stores different code branches. Each branch has a version of the source code and
also the history of that version. This allows developers to work on new features or bug fixes on a separate
branch. There are also other branches that are permanent. There is a development branch where all new
code is merged to and a master branch that development automatically merges to when the regression
tests are passed. There also can be stable release branches. Those stable branches contain the version of
the source code that has been released. If the version of the code is the one currently supported bug fixes
are implemented to this version so that, while a new version is being developed the users can still enjoy
improvements in the current stable version. So the developers do most of their work on specifically
created branches. These changes on the branch then need to be merged with the main development
branch.

When the developer is ready for others to use the newly developed code, they submit a merge
request to merge it to the main development branch, or to a stable branch. A stable branch is a released
branch that only has bug fixes added. The merge request has to be submitted to one of the team developer
that has not taken part in the development to provide independent review. The gitlab software provides a
GUI for processing merge requests as shown in Figure 1.

Figure 1 GitLab GUI for managing merge requests

idaholab / raven Search in this project 0 Qt +

Open 0 Closed e All

eeLi Assignee Author

Wangc/nd dist dev

#328 assigned to 44, ' Die,

Milestone

Distributions

Filter by title or description

Label •

CZ= CM

removed syntax inconsistency with respect code standards

#327 assigned to g Rabiti, Cristian ezrzzen

Update to new output syntax

#324 Unassignec

Adding Morse-Smale Regression Feature Set

#318 Unassigned cm= azi

Alfoa/sp msampler

#317 Unassigned

Talbpaul/many points one csv

4315 -,asOg,t,

Alfoa/hdf5 data objects restart

#221 ass.gneO to la labot, Pau, Wiliiam cprzEizaj

+ New Merge Request

sort: Recently created -

devel. 111., 4

updated about 17 hours ago

devel. Ilk 7

updated 3 days ago

devel. ilk 3

updated 6 days ago

P devel. lib 11

updated 13 days ago

devel. 41.te 1

updated 17 days ago

devel. ate 6

updated 20 days ago

P devel Ilk 27

updated 3 months ago

7 merge requests for this filter

12

4.2 Checklist

Recently, the RAVEN developers implemented a merge request checklist. This checklist is used
for all code changes before they are merged into a main branch (the devel or a stable branch). The
developer reviewing the merge request goes through the checklist and determines if the code passes or
fails the requirements described in the checklist. If any of the items fail, then the merge request is not
accepted and sent back to the original developer who needs to fix the problems identified. As part of the
software quality plan, the code is reviewed and the tests are run. In addition the checklist ensures that all
input changes are properly documented, that the code is properly documented with comments, new
regression test are added if needed and other things. The XML input files for RAVEN have an xsd
schema and this is used to validate inputs as part of the merge request review. If valid inputs would no-
longer work after a merger request, a conversion script that can automatically convert the old input files
needs to be provided as part of the merge request. The current checklist used is:

1. Review all computer code.
2. If any changes occur to the input syntax, there must be an accompanying change to the user

manual and xsd schema. If the input syntax change deprecates existing input files, a conversion
script needs to be added.

3. Tests should validate against xsd schema and pass
4. If significant functionality is added, there should be tests added to check this.
5. If it is a bug fix, tests should be added to prevent the bug from recurring, or the merge request

should explain why tests are not added (such as an existing test would have caught it, but had an
incorrect output).

6. All new functions and new classes should have comments. For C++ they should be in doxygen
format, and for python they should be docstrings.

7. If the xsd schema is changed, it should be rebuilt.
8. If the manual is changed, it should be rebuilt.

4.3 Regression Tests

RAVEN uses regression tests to ensure that new code changes do not cause regressions (failure of
already existing capabilities). Regressions are where the code originally worked, but a change causes
different behavior. The regression tests are used as part of the checklist. They are also automatically run
on the moosebuild website for the master and development branches and when merge requests are
submitted. Moosebuild shows the results of the tests as shown in Figure 2. The numbers of regression
tests have been increased. In November of 2014, there were 60 regression tests and in September of 2015
there are now 122 tests. New tests are added as new features are added, or as gaps in coverage are
identified.

The regression testing system has been extended for RAVEN’s unique needs. Because RAVEN is
mostly Python, and unlike most other MOOSE applications, the primary output is not an Exodus file,
RAVEN requires some customization of the MOOSE regression testing system. The MOOSE regression
testing system is designed to allow applications to create new types of tests and extend how tests work.
In previous work, the ability to test against a CSV file was added. This year’s work added the ability to
test if an XML file matched a reference (or “gold”) XML file. In addition, for parallel running of the
code, sometimes the outputs in the CSV file are order-dependent on which computer code finished first.
With the original CSV comparison, this would be considered a different result. The current regression

13

tests allow these unordered results to be allowed when the test might return them. These changes in the
regression system make more testing possible in RAVEN.

The code coverage is checked for regression tests. This checks what percentage of the lines or
functions in the code are run when the regression tests are run. Because there is both Python code and
C++ code in RAVEN, two different coverage tools are run. For the C++ code, the lines of code covered
by the tests is 81%. For Python, a script has been created that uses Ned Batchelder’s coverage tool. For
the Python code the lines of code covered is 84%. Moosebuild generates reports automatically for both
these as shown in Figure 3 and Figure 4.

4.4 Workflow for Change Requests

The workflow for committing code requires both review and tests. Figure 5 shows a graphical
version of the workflow. The initial start is usually with an issue that either a RAVEN user or a RAVEN
developer submits using the ticketing system. This issue is either a bug or a feature request. Then a
developer creates a branch and works on resolving the issue. When a developer is finished, they submit a
merge request, and a second developer reviews this merge request. The second developer either requests
changes, accepts the merge request, or rejects it. If it is accepted, then the developer merges the request
into the development branch. Then the regression tests are automatically run again, and if they pass, the
development branch is merged into the master branch.

4.5 Development Issues

When bugs are found or new features are wanted, the users and developers can create an issue.
Other developers can then find these issues. During the fiscal year 2015, 292 issues were created, and 70
are still open. Of the 70 open issues (e.g., feature requests), 6 are labeled as bugs. Figure 6 shows an
example issue.

14

Figure 2 Regression tests on moosebuild

Figure 3 C++ code coverage

* Q https://rnoosebui'.d.inl.gov/v ew res.J v22455 C Ck Search * * E

Step: Fetch and Branch
Show/Hide Loq

Step: Build libMesh
Show/Hide Loa

Step: Build Framework
Show/Hide Loq

Step: Build Crow
Show/Hide Loa

Step: Build Relap-7
Show/Hide Loa

Step: Build Raven
Show/Hide Loa

Step; Test Raven
iShow/Hide Lo.i

Serial Tests...

core_example.PWR_CoreChannel pre dist skipped (Broken for unknown reason)

core_example.PWR_CoreChannel_controlled var csv skipped (Broken, and Josh is not sure what it te...)

core_example.TypPWR_Mult_CoreChannels_control csv skipped (Relap issue #111)

core_example.TypPWR_Mult_CoreChannels_control skipped (Relap issue #111)

tools.tools test OK

DtControlAndProximity.Dt_controlling_test OK

DtControlAndProximity.TimeController test OK

DtControlAndProximity.Time_controlling_test OK

RavenToolTableFunction.spline test OK

core_example.simple_branch OK

core_example.pump OK

RavenToolTableFunction.linear test OK

hnps://hpcsc.inl.gov/ssl/RAVEN/coverage/ C Os Search *

LCOV - code coverage report
Current view: top level

Test: RAVEN Test Coverage
Date: 2015-09-14 17:22:54

Hit Total Coverace

Lines: 492 606 81.2 %
Functions: 118 132 89.4 %

Legend: Rating: medium: >= 75% high:>. 90 %

Dlrectory mir
include/actions 100.0% 2 /2 50.0
include/base 94.7% 18 /19 100.0% 2 /2
src % 23 /27 100.0% 3 /385.2
src/actions % 105 / 133 96.0% 48 /5078.9
src/base 170.0 ,̀ 142 / 203 75.0% 30 /40
src/executioners 91.2% 103 / 113 100.0% 11 / 11

EITC/011tDuts 20 / 29 100.0% 7 / 7
0 0/_ 70 / on inn n

Generated by: LCOV version 1.11

Mon Sep 14 17:22:54 2015

15

Figure 4 Python Code coverage

https://hpcscinl.gov/ssl/RAVEN/python-coveragel e *

Coverage report: 84%

et 4- * I BB

Module statements missing excluded coverage

/home/moosetest/moose_build/client_i jraven/framework/Assembler 6i 6 o 9o%

/home/moosetest/moose_build/client_i jraven/framework/BaseClasses 64 5 o 92%

/home/moosetest/moose_build/client_i jraven/framework 5o 2 o 96%
/CodeInterfaceBaseClass

/home/moosetest/moose_build/client_i jraven/framework/CodeInterfaces 25 o o i00%

/home/moosetest/moose_build/client_i jraven/framework/CodeInterfaces 15 4 o 73%
/ExternalModel/ExternalTest

/home/moosetest/moose_build/client_i jraven/framework/CodeInterfaces 78 o 5 i00%
/Generic/GenericCodeInterface

/home/moosetest/moose_build/client_i jraven/framework/CodeInterfaces 121 12 3 9o%
/Generic/GenericParser

/home/moosetest/moose_build/client_i jraven/framework/CodeInterfaces io6 48 55%
/MooseBasedApp/BISONMESHSCRIPTparser

/home/moosetest/moose_build/client_i jraven/framework/CodeInterfaces 65 3 98%
/MancaRaciarlAnn/RiermArtrIMachTntarfara

16

Figure 5 Code Change Process

Tracking Issue
Submitted by
Extemal User

Tracking Issue
Reviewed by
Developers

Implement
Changes

A

 Yes

Initial Automated
Testing

No

Fixable

Notify Extemal
User of Decision

Yes►—

Merge Changes

 Yes

Yes

♦

Label issue with
associated
requirement

Update Test Case
requirement as

needed

 No ►
Merge to

Development
Branch

•

►

No

Pass Peer
Review?

Comment and
Close Tracking

Issue

•

No

Execute Test
Case(s)

Yes

Test Case
Pass?

Yes

4,

Check in changes
into Master Branch

Comment and
Close Tracking

Issue

Execute Test
Case(s)

17

Figure 6 Example of an Issue

https://hpcgitlabinl.gov/idaholab/raverVissues/274 C q Search

idaholab / raven Q. Search in this project

Open Issue #274 • created by Talbot, Paul William 21 days ago

c73
• Runlnfo block per Step

+ New Issue Close 2: Edit

• Not every step should be run with the same same parameters that we put in our Runlnfo block (for example, NumMPI, runQSUB,

expectedTime, etc).

At some point (possibly when/if RAVEN moves to a client-based mode), it would be smart to have the option to designate run

O information for each Step instead of globally.

e
• 1 participant 12

Write Preview / Edit in fullscreen Assignee: none

idaholab/raven#274

Select assignee

Milestone: noie

Select milestoneComments are parsed with Gitlab Flavored Markdown Attach files by dragging & dropping or selecting them.

Add Comment Close Issue Subscription:

cl> Subscribe

E

18

5. References

1. A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, and R. Kinoshita, “Raven as a tool for dynamic

probabilistic risk assessment: Software overview,” in Proceeding of M&C2013 International
Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering,
on CD-ROM, May 5-9, Sun Valley (2013).

2. C. Rabiti, A. Alfonsi, D. Mandelli, J. Cogliati, R. Martinueau, C. Smith, “Deployment and Overview
of RAVEN Capabilities for a Probabilistic Risk Assessment Demo for a PWR Station Blackout,”
Idaho National Laboratory report: INL/EXT-13-29510 (2013).

3. A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, R. Kinoshita, and A. Naviglio, “RAVEN and dynamic
probabilistic risk assessment: Software overview,” in Proceedings of ESREL European Safety and
Reliability Conference, Wroclaw, Poland (2014).

4. A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, R. Kinoshita, “Performing Probabilistic Risk
Assessment Through RAVEN”, in Proceedings of American Nuclear Society 2013 Annual Meeting
“Next Generation Nuclear Energy: Prospects and Challenges”, Atlanta, GA (2013).

5. D. Gaston, C. Newman, G. Hansen and D. Lebrun-Grandi, “MOOSE: A parallel computational
framework for coupled systems of nonlinear equations,” Nuclear Engineering Design, 239, pp. 1768-
1778, (2009).

19

Appendix A: Initial Requirements

Requirement: R1
RAVEN must be able to parallelize running external codes.
Explanation: RAVEN runs external codes, and sometimes they are not parallelized.
RAVEN will run faster if it can run multiple codes at the same time when multiple cores
are available. Even for parallelized codes it usually will be more efficient to run multiple
instances in parallel than run one code parallelized.
Regression Test: testLHSBisonParallel

Requirement: R2
RAVEN must be able to provide external codes the files that are needed for their running.
Explanation: RAVEN runs external codes, and each instance may need a different input file
that needs to be generated from the sampler choices. RAVEN also may need to read the
output files in. (possibly with application specific code that is user provided.)
Regression Test: simple_framework

Requirement: R3
RAVEN must support 1-Dimensional probability distributions including generating random
numbers from them.
Explanation: RAVEN needs to create different parameters for the simulations that it runs.
For the non-adaptive sampling, probability distributions are used for this (including flat
distributions). In order to do this, the distributions need to be able to calculate things like
PDFs and CDFs and inverse CDFs.
Regression Test: test_distributions

Requirement: R4
RAVEN must support N-Dimensional probability distributions. It must support multivariate
normal distributions and distributions defined by tabular data.
Explanation: The N-Dimensional probability distributions allow the user to model
stochastic dependencies between parameters.
Regression Test: ND_external_MC

Requirement: R5
RAVEN must support a variety of samplers that use probability distributions to sample the
input space.
Explanation: Once through samplers allow sampling strategies such as Grid sampling,
Monte Carlo and Latin Hypercube sampling. These samplers allow the analyses to be
performed.
Regression Test: testGridRaven

Requirement: R6
RAVEN must support adaptive sampling that use already gathered samples to determine
where to do new samples.
Explanation: The adaptive samplers support sampling the input space, but in a more
efficient manner. One example of these samplers is a limit surface search.
Regression Test: test_Adaptive_DynamicEventTreeRAVEN

20

Requirement: R7
RAVEN must support storing and retrieving data in a HDF5 database.
Explanation: RAVEN uses HDF5 databases to store inputs and results for simulations, as
well as other auxiliary information.
Regression Test: test_merge_2_databases

Requirement: R8
RAVEN must support outputting data in CSV format.
Explanation: The user needs to be able to get the data and examine it and sometimes
process it in other programs. Outputting the data in CSV files allows this use to be done.
Regression Test: test_iostep_load

Requirement: R9
RAVEN must support generating plots from the data it generates.
Explanation: The user needs to be able to see the progress of the algorithms, and what the
results are graphically. As well, plots to be used in documentation and reports need to be
outputted. The plotting capability of RAVEN is used for this.
Regression Test: test_output

Requirement: R10
RAVEN must be able to provide data to MOOSE based applications, and retrieve data if the
application successfully completes.
Explanation: RAVEN uses external simulation software to calculate physical models.
RAVEN creates input files, calls the external code, and then reads in the results.
Regression Test: testGridBison

Requirement: R11
RAVEN must be able to generate Reduced Order Models from its data and use them to
predict responses from a system.
Explanation: Often the physical model is computationally expensive. For some models the
relevant output parameters can be captured by a much simpler model that can be quickly
calculated. This is the purpose for the Reduced order model.
Regression Test: test_rom_trainer

Requirement: R12
RAVEN must be able to provide data to a user provided python function, and retrieve the
data from that.
Explanation: Sometimes all that is needed for the simulation is a function that can be
calculated in Python. The external model allows this. This executes a python function to
determine the result.
Regression Test: testExternalModel

Requirement: R13
RAVEN must be able to perform various calculation tasks, and transfer data to the next
task.
Explanation: Sequences of calculation are one of the main uses of RAVEN. For example, a
initial calculation can be used to generate data to train a ROM, and then later calculations

21

can use the ROM for faster calculation. As well, steps allow various post processing to be
done.
Regression Test: testLimitSurfacePostProcessor

